Hyperglucagonemia precedes a decline in insulin secretion and causes hyperglycemia in chronically glucose-infused rats.
نویسندگان
چکیده
Islet damage from glucose toxicity is implicated in the pathogenesis of type 2 diabetes, but the sequence of events leading to islet cell dysfunction and hyperglycemia remains unclear. To examine the early stages of islet pathology resulting from increased basal glucose loads, normal awake rats were infused with glucose continuously for 10 days. Plasma glucose and markers of islet and liver function were monitored throughout the infusion. After initial hyperglycemia, rats adapted to the infusion and maintained euglycemia for approximately 4 days. Continued infusion led to worsening hyperglycemia in just 5% of rats after 6 days, but 69% after 8 days and 89% after 10 days, despite unchanged basal and stimulated plasma insulin and C-peptide concentrations. In contrast, plasma glucagon concentrations increased fivefold. Endogenous glucose production (EGP) was appropriately suppressed after 4 days (2.8 ± 0.7 vs. 6.1 ± 0.4 mg·kg(-1)·min(-1) on day 0, P < 0.001) but tripled between days 4 and 8 (9.9 ± 1.7 mg·kg(-1)·min(-1), P < 0.01). Surprisingly, the increase in EGP was accompanied by increased mitochondrial phosphoenolpyruvate carboxykinase expression with appropriate suppression of the cytosolic isoform. Infusion of anti-glucagon antibodies normalized plasma glucose to levels identical to those on day 4 and ∼300 mg/dl lower than controls. This improved glycemia was associated with a 60% reduction in EGP. These data support the novel concept that glucose toxicity may first manifest as α-cell dysfunction prior to any measurable deficit in insulin secretion. Such hyperglucagonemia could lead to excessive glucose production overwhelming the capacity of the β-cell to maintain glucose homeostasis.
منابع مشابه
The effect of experimental insulin deficiency on glucagon secretion.
Suppression of pancreatic glucagon secretion by hyperglycemia is a characteristic of normal alpha cell function. However, in diabetic subjects, plasma glucagon is normal or high despite hyperglycemia. It seemed possible that the presence of glucose or its metabolites within the alpha cell might be essential for suppression of glucagon secretion, and that in diabetes an intracellular deficiency ...
متن کاملEvidence That in Uncontrolled Diabetes, Hyperglucagonemia Is Required for Ketosis but Not for Increased Hepatic Glucose Production or Hyperglycemia
Several lines of evidence implicate excess glucagon secretion in the elevated rates of hepatic glucose production (HGP), hyperglycemia, and ketosis characteristic of uncontrolled insulin-deficient diabetes (uDM), but whether hyperglucagonemia is required for hyperglycemia in this setting is unknown. To address this question, adult male Wistar rats received either streptozotocin (STZ) to induce ...
متن کاملPancreatic Alpha-Cell Dysfunction Contributes to the Disruption of Glucose Homeostasis and Compensatory Insulin Hypersecretion in Glucocorticoid-Treated Rats
Glucocorticoid (GC)-based therapies can cause insulin resistance (IR), glucose intolerance, hyperglycemia and, occasionally, overt diabetes. Understanding the mechanisms behind these metabolic disorders could improve the management of glucose homeostasis in patients undergoing GC treatment. For this purpose, adult rats were treated with a daily injection of dexamethasone (1 mg/kg b.w., i.p.) (D...
متن کاملCirculating Glucagon 1-61 Regulates Blood Glucose by Increasing Insulin Secretion and Hepatic Glucose Production
Glucagon is secreted from pancreatic α cells, and hypersecretion (hyperglucagonemia) contributes to diabetic hyperglycemia. Molecular heterogeneity in hyperglucagonemia is poorly investigated. By screening human plasma using high-resolution-proteomics, we identified several glucagon variants, among which proglucagon 1-61 (PG 1-61) appears to be the most abundant form. PG 1-61 is secreted in sub...
متن کاملChronic hyperglycemia is associated with impaired glucose influence on insulin secretion. A study in normal rats using chronic in vivo glucose infusions.
We have proposed that chronic hyperglycemia alters the ability of glucose to modulate insulin secretion, and have now examined the effects of different levels of hyperglycemia on B cell function in normal rats using chronic glucose infusions. Rats weighing 220-300 g were infused with 0.45% NaCl or 20, 30, 35, or 50% glucose at 2 ml/h for 48 h, which raised the plasma glucose by 18 mg/dl in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 301 6 شماره
صفحات -
تاریخ انتشار 2011